
Broadband Decoupling at High magnetic Fields: Challenges and Solutions 
 

Robin A. de Graaf 
MRRC, Yale University, New Haven, CT, USA 

robin.degraaf@yale.edu
 
 
Introduction 
In any scalar-coupled spin-system the resonance lines are split into multiple lines of 
smaller intensity. Decoupling refers to a technique in which the multiple lines are merged 
back into one singlet resonance in order to (1) achieve improved signal-to-noise ratio and 
(2) achieve spectral simplification. In its simplest form decoupling can only achieve these 
goals for a single, on-resonance spectral line. Broadband decoupling therefore refers to 
the challenge of achieving these two goals for all resonances in the total spectral range. 
Since decoupling employs (high-powered) radiofrequency (RF) pulses during acquisition 
and since the spectral bandwidth increases at higher magnetic fields, the challenges for a 
successful implementation of broadband decoupling typically boil down to minimizing 
tissue heating (SAR), while optimizing signal recovery and artifact suppression. Here the 
principles of decoupling are described, together with the challenges and solution of 
broadband decoupling at high magnetic fields. 
 
Principle of Decoupling 
Decoupling is typically employed in heteronuclear experiments, for example carbon-13 
detection with proton decoupling. While homonuclear decoupling is possible, it will not 
be discussed here as it is inherently narrow-banded. Since the carbon-13 spectral 
bandwidth is > 100 ppm (as opposed to < 5 ppm for protons), the proton-detected, 
carbon-decoupled experiment is technically the most challenging and will be used to 
discuss the principles of decoupling. 
 Consider a 13C-labelled nucleus coupled to a proton, for example in [1-13C]-
formic acid (H13COOH). The regular proton spectrum will be characterized by two 
resonances centered around 8.26 ppm (“the chemical shift”) and separated by 218.6 Hz 
(“the scalar coupling constant J”). The single resonance line of regular formic acid is split 
into two resonances for the 13C-labelled compound because the magnetic environment of 
the proton is dependent on the magnetic moment (“spin”) of the attached 13C nucleus. 
When the 13C nucleus is in the β-state (anti-parallel to B0) the frequency of the attached 
proton is J/2 higher than for regular formic acid, while the proton frequency is J/2 lower 
when the 13C nucleus is in the α-state (parallel to B0). Because the 1H-13C interaction is 
governed by the electrons in the chemical bond, the scalar coupling constant J is 
independent of the external magnetic field B0. The appearance of two resonances can also 
be described more formally using the product operator formalism. Following excitation, 
the density matrix during acquisition is given by 
 
 tJCHtJHt CHzyCHx ππσ sin2cos)( +=    [1] 
 
where H and C are the proton and carbon-13 product operators along the specified axis 
(traditionally I and S or A and X are used) and JCH is the heteronuclear scalar coupling 
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constant. Graphically, Eq. [1] describes the interchange between in-phase proton 
magnetization (Hx) along the x-axis of the rotating frame and anti-phase proton 
magnetization (2HyCz) along the y-axis (Fig. 1A).  
 

Fig. 1. Evolution of proton 
transverse magnetization in the (A) 
absence and (B) presence of a 13C 
inversion pulse at time = t. Without 
an inversion pulse, the 
magnetization evolves as described 
by Eq. [1]. The inversion pulse 
inverts the 13C spin-populations α 
and β, ultimately leading to 
refocusing of proton magnetization 
at time = 2t.  
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The key ingredient to decoupling is the utilization of spectrally-selective RF pulses. 
Fortunately in a 1H-13C heteronuclear system a regular (e.g. “square”) RF pulse on the 
carbon-13 channel is automatically selective, since it does not directly perturb the 
attached protons. Following a delay t and a (selective) carbon-13 180º pulse the density 
matrix is given by 
 
 tJCHtJHt CHzyCHx ππσ sin2cos)( −=    [2] 
 
and at the end of an additional delay t, the density matrix is given by 
 
 xHt =)2(σ         [3] 
 
In other words following a delay t, a selective 13C 180 º pulse and an identical delay t the 
evolution due to scalar coupling has been refocused (Fig. 1B). Therefore, a decoupled 1H 
NMR spectrum can be obtained when the proton acquisition points are timed to exactly 
correspond to multiples of 2t, i.e. the points of refocusing (Fig. 2B). For each acquisition 
point the effects of scalar coupling appear to be constant (i.e. frozen) and therefore only a 
single resonance will be observed at the proton frequency (note that proton chemical 
shifts are not refocused). While this simple experiment can theoretically work, a simple 
calculation will show that it is experimentally impractical. At 7.0 Tesla a reasonable 
proton spectral bandwidth is 4.0 kHz corresponding to a 250 us dwell-time (i.e. time 
between acquisition points). The length of the carbon-13 180º pulse can therefore be, at 
most 250 us, corresponding to a required B1 strength of 2.0 kHz. Typically, proton signal 
would be acquired for ~250 ms corresponding to 1000 dwell-times and hence 1000 
carbon-13 inversion pulses. Both the required peak power of 2.0 kHz, as well as the 
average power are unrealistic for human experiments. The peak power can simply not be 
met by RF amplifiers and coils, while the average power will lead to unacceptable tissue 
heating (specific absorption rate is proportional to B1av

2 T). And unless the 180º pulses 



are made much shorter than the dwell-time (and hence have much higher peak and 
average powers) an additional problem arises.  

 
Fig. 2 Principle of broadband 
decoupling. (B) Perfect, 
infinitely short 13C inversion 
pulses can be executed to give 
perfect refocusing of scalar 
evolution at each 1H acquisition 
point (A), at the expense of 
unacceptable power deposition. 
(C) Stretching the inversion 
pulses to a single long pulse 
(CW) lowers the power 
deposition at the expense of poor 
off-resonance performance. (D) 
All successful decoupling 
method employs supercycles of 
pulses, in which R can be a series 
of composite or adiabatic pulses. 
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When the length of the 180º pulses is equal to the dwell-time, one essentially has a single, 
long RF pulse and the technique is often referred to as continuous wave (CW) 
decoupling. Unfortunately, the spectral bandwidth over which CW decoupling works is 
extremely limited (typically only a single on-resonance line can be decoupled), such that 
CW decoupling can not be considered as a broadband decoupling technique. 
 
Broadband Inversion Pulses 
While the principle of decoupling is relatively simple (see previous section), the 
challenge becomes on how to decouple wider spectral bandwidths without increasing the 
peak and average power and without increasing artifacts. The key to broadband 
decoupling is, obviously, the design of broadband inversion pulses. The first family of 
broadband inversion pulses that where implemented for broadband decoupling techniques 
are the so-called composite RF pulses. Composite pulses are composed of a number of 
RF pulses with different nutation angles and relative phases. While the overall rotation 
during a composite RF pulse is typically much larger than 180º, the final net nutation 
angle is close to 180º with some insensitivity towards frequency offsets and even towards 
B1 inhomogeneity. The additional rotations are simply used to compensate the 
imperfection of a single 180º pulse by under- or over-rotating the magnetization where 
required. The two most successful composite pulses are 90ºx180ºy90ºx and 90ºx180º-

x270ºx, forming the basis for MLEV (1) and WALTZ (2,3) decoupling. Fig. 3A shows the 
performance of a WALTZ inversion pulse relative to a conventional 180º pulse. Clearly, 
the off-resonance performance has greatly improved, as has the insensitivity towards B1 
inhomogeneity (not shown). While the individual composite RF pulses are already 
greatly improved, further improvements can be achieved by placing the composite pulses 
in so-called supercycles. For example, WALTZ-4 is composed of four successive 
segments RxRxR-xR-x in which Rx is the original composite pulse. WALTZ-4 can be 
placed inside another supercycle, given rise to WALTZ-16, one of the most popular and 
commonly used decoupling sequence. The RF pulses further in the supercycle 



compensate imperfections introduced to the earlier pulses. Composite pulses were 
initially designed based on visual representation of pulse rotations and are therefore 
ultimately limited by human ability to visualize complex rotations. Computational 
optimization of the nutation angle and relative phases of composite pulses has yielded 
several useful decoupling techniques (4-7). 

 Fig. 3 Off-resonance performance 
of (A) 250 us square and 750 us 
WALTZ (gray) pulses and (B) a 
3.0 ms AFPSTn, n=4 , R = 20 
pulse. For all simulations B1 = 2.0 
kHz.  
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 However, with the advent of ever higher magnetic fields even composite RF 
pulses can not achieve sufficient inversion bandwidths at reasonable power levels. As a 
result, the amplitude- and frequency-modulated adiabatic RF pulses were re-evaluated for 
use in broadband decoupling applications (8-10). In particular the adiabatic full passage 
(AFP) inversion pulses were investigated. Fig. 3B show the inversion profile of a 
hyperbolic secant AFP inversion pulse at the same peak power as the composite pulses of 
Fig. 3A. The inversion bandwidth is several times wider. 
 
Broadband Decoupling 
So far the off-resonance performance of inversion pulses has been discussed and while 
inversion pulses are a key ingredient in broadband decoupling it is not the only factor that 
determines the quality of decoupling. Because of power and SAR limitations, inversion 
pulses are typically stretched over several dwell-times. Even in the presence of perfect 
inversion pulses this will lead to artifacts called cycling sidebands (Fig. 4). In a perfect 
(high-power) experiment, signal refocusing according to Eq. [3] occurs at each data 
acquisition point (Fig. 4A). However, because the inversion pulse stretches over several 
acquisition points, scalar evolution is not perfectly refocused for the acquisition points 
before the end of the inversion pulse. As a result, the free induction decay (FID) will 
exhibit small modulations which, after Fourier transformation manifest themselves as (1) 
small cycling sidebands off the main decoupled peak and (2) a decrease in the mean 
decoupled peak intensity. The intensity, phase and frequency of the sidebands are a 
complicated function of the pulselength, the pulse shapes, the B1 amplitude, the scalar 
coupling constant and the spin-system under investigation. While all of the effects can be 
experimentally assessed, Skinner and Bendall (11) have presented a theoretical product 
operator description of these phenomena, with which the performance of any decoupling 
sequence can be quantitatively described (12). Table I shows the performance of many 
common decoupling techniques as a function of the applied decoupling B1 amplitude 
(12). It follows that for relatively low decoupling bandwidths WALTZ-16 and MLEV-16 
offer superior performance. When very high decoupling bandwidths are required, for 
example for 13C-decoupling at 11.74 T decoupling based on adiabatic RF pulses offer the 
only viable option. For intermediate decoupling bandwidths many options exist,  



Fig. 4. Manifestation of decoupling 
sidebands. (A) During a perfect decoupling 
experiment (infinitely short square pulses) 
scalar evolution is refocused at each 
acquisition point and the signal decay is 
described by chemical shift evolution and 
T2 relaxation. In a two-spin-system, the 
NMR resonances will merge into a single 
resonance of double the intensity (100%). 
(B) With finite inversion pulses, scalar 
evolution is not refocused at each 
acquisition point leading to a small time-
domain modulation which leads to 
decoupling sidebands in the spectrum and a 
lower decoupled resonance. 
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including decoupling based on optimized composite pulses. For most applications the 
required decoupling bandwidth ultimately determines the amount of RF power required. 
Therefore, for a given decoupling method, reducing the RF power is synonymous with 
reducing the spectral bandwidth. Proton observation with 13C decoupling offers a unique 
window to RF power reduction, since the 13C-labeled resonance are grouped from 10 to 
60 ppm (amino acids) and from 90 ppm and up (glucose). Unlike composite decoupling, 
adiabatic decoupling can be made frequency-selective in that decoupling can be achieved 
between 10 and 60 ppm while simultaneously leaving resonances at other frequencies 
(e.g. glucose) unperturbed. This leads to an almost two-fold bandwidth reduction. Fig. 5 
shows the high-quality proton-detected, carbon-decoupling NMR spectra that can be 
observed with this technique at 9.4 T. 

(A) 1H and (B) 1H-[13C] edited NMR spectra 
acquired from rat brain (180 µL volume, 
TR/TE = 4000/8.5 ms, NEX = 512) at 9.4 T. 
Data acquisition began 2 h after the start of 
an intravenous [U-13C6]-glucose infusion. 
Selective adiabatic decoupling based on 
AFPST4 pulses (T = 1.5 ms, R = 10) was 
applied during the entire acquisition period 
(102 ms) with B2max = 1600 Hz, 
corresponding to B2rms = 1100 Hz. A 
frequency-selective 13C inversion pulse was 
used for 13C editing over the 13C shift range 
of 10-60 ppm without perturbing the 
glucose-C1 resonances in the range 90-100 
ppm. Therefore, the 1H-[13C] signals for 
glucose-C1 and the 1H-[12C]-signals for all 
species were edited out of spectrum (B). 
 
 
 

 
 
 
 
 



Conclusions 
Broadband decoupling is a RF-power intensive technique used to achieve improved 
signal-to-noise ratio and spectral simplification in heteronuclear NMR applications. 
Decoupling bandwidth and decoupling cycling sidebands ultimately determine the 
amount of RF power required. While one can not circumvent the minimum required RF 
power, one can choose the proper RF inversion pulses to achieve the widest bandwidths 
at the lowest decoupling sidebands. For certain specific applications, the use of selective 
decoupling can significantly reduce the RF power requirements. 
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WALTZ-16 1.64 2.27 2.37 2.40
MLEV-16 1.74 2.05 2.18 2.21

F2 1.34 2.68 2.74 2.76
F3 0 3.21 4.13 4.17

FP2 1.38 2.12 2.17 2.20
FP3 1.22 2.61 2.92 3.30

PBAR 0.52 0.65 0.66 0.68

AFPTTa 0 1.96 2.72 3.55

Table 1: Relative decoupling bandwidths (BW90/B2max) as a 
function of B2max or B2rms

GARP 0 0 1.65 4.96

AFPSTna 0 0.45 3.44 5.40

0.50 1.00.75 1.5B2max (kHz)

PBAR 0.66 0.67 0.68 0.68

AFPTTa 0 2.15 2.82 3.67
AFPSTna 1.48 3.36 4.36 7.53

a The performance at different B2 field strengths may correspond to AFP pulses with different R-values, pulse lengths or modulation functions. 
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Further details can be found in (12). 
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